Cerebras Systems представила компьютер с самым большим в мире процессором 22×22 сантиметра

Моя цель - предложение широкого ассортимента товаров и услуг на постоянно высоком качестве обслуживания по самым выгодным ценам.

Прежде чем перейти к статье, хочу вам представить, экономическую онлайн игру Brave Knights, в которой вы можете играть и зарабатывать. Регистируйтесь, играйте и зарабатывайте!


Схема компьютера CS-1 показывает, что большая часть отведена для питания и охлаждения гигантского «процессора-на-пластине» Wafer Scale Engine (WSE). Фото: Cerebras Systems

В августе 2019 года компания Cerebras Systems и её производственный партнер TSMC анонсировали крупнейшую микросхему в истории компьютерной техники. С площадью 46 225 мм² и 1,2 триллиона транзисторов микросхема Wafer Scale Engine (WSE) примерно в 56,7 раз больше, чем самый большой GPU (21,1 млрд транзисторов, 815 мм²).

Скептики говорили, что разработать процессор — не самая сложная задача. Но вот как он будет работать в реальном компьютере? Каков процент брака на производстве? Какое потребуется питание и охлаждение? Сколько будет стоить такая машина?

Похоже, инженерам Cerebras Systems и TSMC удалось решить эти проблемы. 18 ноября 2019 года на конференции Supercomputing 2019 они официально представили CS-1 — «самый быстрый в мире компьютер для расчётов в области машинного обучения и искусственного интеллекта».

Первые экземпляры CS-1 уже отправлены заказчикам. Один из них установлен в Аргоннской национальной лаборатории министерства энергетики США, той самой, в которой скоро начнётся сборка самого мощного в США суперкомпьютера из модулей Aurora на новой архитектуре GPU от Intel. Другим заказчиком стала Ливерморская национальная лаборатория.

Процессор с 400 000 вычислительными ядрами предназначен для дата-центров по обработке вычислений в области машинного обучения и искусственного интеллекта. Cerebras заявляет, что компьютер обучает системы AI на порядки эффективнее, чем существующее оборудование. CS-1 по производительности эквивалентен «сотням серверов на базе GPU», потребляющих сотни киловатт. В то же время он занимает всего 15 юнитов в серверной стойке и потребляет около 17 кВт.


Процессор WSE. Фото: Cerebras Systems

Генеральный директор и соучредитель Cerebras Systems Эндрю Фельдман (Andrew Feldman) говорит, что CS-1 является «самым быстрым в мире компьютером AI». Он сравнил его с кластерами TPU от Google и отмечает, что каждый из них «занимает 10 стоек и потребляет более 100 киловатт, чтобы обеспечить треть производительности одной установки CS-1».


Компьютер CS-1. Фото: Cerebras Systems

Обучение больших нейронных сетей может занимать недели на стандартном компьютере. Установка CS-1 с процессорным чипом из 400 000 ядер и 1,2 триллиона транзисторов выполняет эту задачу за минуты или даже секунды, пишет IEEE Spectrum. Однако Cerebras не представила реальные результаты тестов, чтобы проверить заявления о высокой производительности, например, тесты MLPerf. Вместо этого компания напрямую установила контакты с потенциальными клиентами — и позволила обучать собственные модели нейронных сетей на CS-1.

Такой подход не является чем-то необычным, считают аналитики: «Каждый управляет своими собственными моделями, которые они разработали для своего собственного бизнеса, — говорит Карл Фройнд (Karl Freund), аналитик по приложениям искусственного интеллекта в Moor Insights & Strategies. — Это единственное, что имеет значение для покупателей».

Разработкой специализированных чипов для AI занимаются многие компании, в том числе традиционные представители индустрии, такие как Intel, Qualcomm, а также различные стартапы в США, Великобритании и Китае. Google разработала чип специально для нейронных сетей — тензорный процессор, или TPU. Несколько других производителей последовали её примеру. Системы AI работают в многопоточном режиме, а узким местом становится перемещение данных между чипами: «Соединение микросхем на самом деле замедляет их — и требует много энергии, — объясняет Субраманьян Айер (Subramanian Iyer), профессор Калифорнийского университета в Лос-Анджелесе, который специализируется на разработке чипов для искусственного интеллекта. Производители оборудования изучают множество различных вариантов. Некоторые пытаются расширить межпроцессорные соединения.

Основанный три года назад стартап Cerebras, который получил более $200 млн венчурного финансирования, предложил новый подход. Идея в том, чтобы сохранить все данные на гигантском чипе — и тем самым ускорить вычисления.



Вся пластина-микросхема разделена на 400 000 более мелких секций (ядра), с учётом того, что некоторые из них не будут работать. Чип разработан с возможностью маршрутизации вокруг дефектных областей. Программируемые ядра SLAC (Sparse Linear Algebra Cores) оптимизированы для линейной алгебры, то есть для вычислений в векторном пространстве. Компания также разработала технологию «утилизации разреженности» (sparsity harvesting) для повышения производительности вычислений при разреженных рабочих нагрузках (содержащих нули), таких как глубокое обучение. Векторы и матрицы в векторном пространстве обычно содержат множество нулевых элементов (от 50% до 98%), поэтому на традиционных GPU большая часть вычислений уходит впустую. В отличие от них, ядра SLAC предварительно отфильтровывают нулевые данные.

Коммуникации между ядрами обеспечивает система Swarm с пропускной способностью 100 петабит в секунду. Маршрутизация аппаратная, задержки измеряются в наносекундах.

Стоимость компьютера не называется. Независимые эксперты считают, что реальная цена зависит от процента брака. Также достоверно не известна производительность микросхемы и сколько ядер работоспособны в реальных образцах.

Программное обеспечение


Cerebras огласила некоторые подробности о программной части системы CS-1. Программное обеспечение даёт возможность пользователям создавать собственные модели машинного обучения с использованием стандартных фреймворков, таких как PyTorch и TensorFlow. Затем система распределяет 400 000 ядер и 18 гигабайт памяти SRAM на чипе по слоям нейронной сети таким образом, чтобы все слои завершали работу примерно в одно время со своими соседями (задача оптимизации). В результате информация обрабатывается всеми слоями без задержек. Благодаря подсистеме ввода-вывода из 12 линий 100-гигабитного Ethernet машина CS-1 может обрабатывать 1,2 терабита данных в секунду.

Преобразованием исходной нейросети в оптимизированную исполняемую репрезентацию (Cerebras Linear Algebra Intermediate Representation, CLAIR) занимается компилятор графов (Cerebras Graph Compiler, CGC). Компилятор выделяет вычислительные ресурсы и память для каждой части графа, а затем сопоставляет их с вычислительным массивом. Затем вычисляется путь коммуникации по внутренней структуре пластины, уникальный для каждой сети.


Распределение математических операций нейросети по ядрам процессора. Фото: Cerebras

Из-за огромного размера WSE все слои в нейронной сети одновременно размещаются на нём и работают параллельно. Этот подход уникален для WSE — ни у одного другого устройства недостаточно встроенной памяти, чтобы поместить все слои сразу на одном чипе, заявляет Cerebras. Такая архитектура с размещением сразу всей нейросети на чипе даёт огромные преимущества благодаря высокой пропускной способности и низкой задержке.

Программное обеспечение может выполнять задачу оптимизации для нескольких компьютерах, позволяя кластеру компьютеров действовать как одна большая машина. Кластер из 32 компьютеров CS-1 показывает примерно 32-кратное увеличение производительности, что свидетельствует об очень хорошей масштабируемости. Фельдман говорит, что это отличается от поведения кластеров на основе GPU: «Сегодня, когда вы составляете кластер из графических процессоров, он не ведёт себя как одна большая машина. Вы получаете множество маленьких машин».

В пресс-релизе сказано, что Аргоннская национальная лаборатория работает с Cerebras уже два года: «Развернув CS-1, мы резко увеличили скорость обучения нейронных сетей, что позволило повысить продуктивность наших исследований и добиться значительных успехов».

Одной из первых нагрузок для CS-1 станет нейросетевая симуляция столкновения чёрных дыр и гравитационных волн, которые создаются в результате этого столкновения. Предыдущая версия этой задачи работала на 1024 из 4392 узлов суперкомпьютера Theta.
Источник: https://habr.com/ru/company/dcmiran/blog/476706/


Интересные статьи

Интересные статьи

Одной из самых сложных вещей за последние восемь месяцев перехода на удаленную работу стало то, как компании измеряют продуктивность своих сотрудников. Раньше менеджеры м...
Японское агентство морских наук и технологий (The Japan Agency for Marine — Earth Science and Technology) заключило контракт с компанией NEC на поставку суперкомпьютера «the Earth S...
Закон Нивена говорит, что квантовые компьютеры улучшаются с «дважды экспоненциальной скоростью». Если он выдержит проверку временем, то ждать квантового превосходства осталось недолго. Квантов...
Если Вы используете в своих проектах инфоблоки 2.0 и таблицы InnoDB, то есть шанс в один прекрасный момент столкнуться с ошибкой MySQL «SQL Error (1118): Row size too large. The maximum row si...
Реализация ORM в ядре D7 — очередная интересная, перспективная, но как обычно плохо документированная разработка от 1с-Битрикс :) Призвана она абстрагировать разработчика от механики работы с табл...