Прежде чем перейти к статье, хочу вам представить, экономическую онлайн игру Brave Knights, в которой вы можете играть и зарабатывать. Регистируйтесь, играйте и зарабатывайте!
Здравствуй, Хабр!
Цель этой статьи — рассказать о роли степеней свободы в статистическом анализе, вывести формулу F-теста для отбора модели при множественной регрессии.
1. Роль степеней свободы (degree of freedom) в статистике
Имея выборочную совокупность, мы можем лишь оценивать числовые характеристики совокупности, параметры выбранной модели. Так не имеет смысла говорить о среднеквадратическом отклонении при наличии лишь одного наблюдения. Представим линейную регрессионную модель в виде:
Сколько нужно наблюдений, чтобы построить линейную регрессионную модель? В случае двух наблюдений можем получить идеальную модель (рис.1), однако есть в этом недостаток. Причина в том, что сумма квадратов ошибки (MSE) равна нулю и не можем оценить оценить неопределенность коэффициентов . Например не можем построить доверительный интервал для коэффициента наклона по формуле:
А значит не можем сказать ничего о целесообразности использования коэффициента в данной регрессионной модели. Необходимо по крайней мере 3 точки. А что же, если все три точки могут поместиться на одну линию? Такое может быть. Но при большом количестве наблюдений маловероятна идеальная линейная зависимость между зависимой и независимыми переменными (рис. 1).
Количество степеней свободы - количество значений, используемых при расчете статистической характеристики, которые могут свободно изменяться. С помощью количества степеней свободы оцениваются коэффициенты модели и стандартные ошибки. Так, если имеется n наблюдений и нужно вычислить дисперсию выборки, то имеем n-1 степеней свободы.
Мы не знаем среднее генеральной совокупности, поэтому оцениваем его средним значением по выборке. Это стоит нам одну степень свободы.
Пусть известны сумма квадратов отклонений , среднее значение . Возьмем несколько реализаций значений . Тогда для выполнения равенства
значение должно быть фиксированное.
Пример представлен на рисунке 2.
Представим теперь что имеется 4 выборочных совокупностей (рис.3).
Каждая выборочная совокупность имеет свое среднее значение, определяемое по формуле . И каждое выборочное среднее может быть оценено . Для оценки мы используем 2 параметра , а значит теряем 2 степени свободы (нужно знать 2 точки). То есть количество степеней свобод Заметим, что при 2 наблюдениях получаем 0 степеней свободы, а значит не можем оценить коэффициенты модели и стандартные ошибки.
Таким образом сумма квадратов ошибок имеет (SSE, SSE - standard error of estimate) вид:
Стоит упомянуть, что в знаменателе стоит n-2, а не n-1 в связи с тем, что среднее значение оценивается по формуле . Квадратные корень формулы (4) - ошибка стандартного отклонения.
В общем случае количество степеней свободы для линейной регрессии рассчитывается по формуле:
где n - число наблюдений, k - число независимых переменных.
2. Анализ дисперсии, F-тест
При выполнении основных предположений линейной регрессии имеет место формула:
где ,
,
В случае, если имеем модель по формуле (1), то из предыдущего раздела знаем, что количество степеней свободы у SSTO равно n-1. Количество степеней свободы у SSE равно n-2. Таким образом количество степеней свободы у SSR равно 1. Только в таком случае получаем равенство .
Масштабируем SSE и SSR с учетом их степеней свободы:
Получены хи-квадрат распределения. F-статистика вычисляется по формуле:
Формула (9) используется при проверке нулевой гипотезы при альтернативной гипотезе в случае линейной регрессионной модели вида (1).
3. Выбор линейной регрессионной модели
Известно, что с увеличением количества предикторов (независимых переменных в регрессионной модели) исправленный коэффициент детерминации увеличивается. Однако с ростом количества используемых предикторов растет стоимость модели (под стоимостью подразумевается количество данных которые нужно собрать). Однако возникает вопрос: “Какие предикторы разумно использовать в регрессионной модели?”. Критерий Фишера или по-другому F-тест позволяет ответить на данный вопрос.
Шаги:
Определим “полную” модель: (10)
Определим “укороченную” модель: (11)
Вычисляем сумму квадратов ошибок для каждой модели:
(12)
(13)
Определяем количество степеней свобод
Рассчитываем F-статистику:
(14)
Нулевая гипотеза - “укороченная” модель мало отличается от “полной (удлиненной) модели”. Поэтому выбираем “укороченную” модель. Альтернативная гипотеза - “полная (удлиненная)” модель объясняет значимо большую долю дисперсии в данных по сравнению с “укороченной” моделью.
Коэффициент детерминации из формулы (6):
Из формулы (15) выразим SSE(F):
SSTO одинаково как для “укороченной”, так и для “длинной” модели. Тогда (14) примет вид:
Поделим числитель и знаменатель (14a) на SSTO, после чего прибавим и вычтем единицу в числителе.
Используя формулу (15) в конечном счете получим F-статистику, выраженную через коэффициенты детерминации.
3 Проверка значимости линейной регрессии
Данный тест очень важен в регрессионном анализе и по существу является частным случаем проверки ограничений. Рассмотрим ситуацию. У линейной регрессионной модели всего k параметров (Сейчас среди этих k параметров также учитываем ).Рассмотрим нулевую гипотеза — об одновременном равенстве нулю всех коэффициентов при предикторах регрессионной модели (то есть всего ограничений k-1). Тогда “короткая модель” имеет вид . Следовательно. Используя формулу (14.в), получим
Заключение
Показан смысл числа степеней свободы в статистическом анализе. Выведена формула F-теста в простом случае(9). Представлены шаги выбора лучшей модели. Выведена формула F-критерия Фишера и его запись через коэффициенты детерминации.
Можно посчитать F-статистику самому, а можно передать две обученные модели функции aov, реализующей ANOVA в RStudio. Для автоматического отбора лучшего набора предикторов удобна функция step.
Надеюсь вам было интересно, спасибо за внимание.
При выводе формул очень помогли некоторые главы из курса по статистике STAT 501
Теги:
F-тест
Отбор моделей
Линейная регрессия
Хабы:
Математика
Статистика