Прежде чем перейти к статье, хочу вам представить, экономическую онлайн игру Brave Knights, в которой вы можете играть и зарабатывать. Регистируйтесь, играйте и зарабатывайте!
Недавние эксперименты учёных Гарвардского университета и инженеров Samsung по созданию нейроморфных чипов вновь напомнили о старой идее: можно ли соединить человеческий мозг и компьютер напрямую? Примерно как в классике киберпанка, «Нейроманте», «Матрице» и «Ghost in the Shell»: всовываешь в имплантированный разъём штекер, и заходишь в компьютерную сеть мозгом, без посредства глаз и пальцев. Откуда скачиваешь, скажем, умение ездить на скейтборде и разговаривать на языке маори.
Два с половиной года тому назад мы с Полиной Нескучной тоже заинтересовались вопросом хотя бы теоретической возможности выучить кун-фу или управление вертолётом, загрузив его «прямо в мозг». Поэтому взяли для портала Warhead.su интервью о перспективах нейроинтерфейсов, brain-computer interface (BCI): у молекулярного биолога Ирины Якутенко, нейробиолога Светланы Ястребовой, и конгитивиста, популяризатора науки Аси Казанцевой. С ним можно ознакомиться по ссылке тут.
Ну а я вкратце перескажу то, к каким выводам тогда пришли специалисты – и добавлю некоторое количество появившейся с тех пор новой информации.
Пока что выводы эти, прямо скажем, не очень утешительные.
Да, и человеческий мозг, и компьютерное устройство – это вычислительные системы, но организованы они совершенно разным образом. Живой мозг человека – аналоговый компьютер, выстроенный на запредельно сложной системе связей десятков миллиардов нейронов.
Он организован принципиально иначе, нежели классическое «цифровое» компьютерное устройство, работающее с помощью созданных людьми программных кодов, принципиально понимаемых и воспроизводимых даже в случае весьма кривого и причудливого написания.
Как именно организовано записывание, хранение и обработка информации в живой нейросети в наших головах — мы до сих пор имеем очень смутное представление. Да, какие-то общие данные об активности зон мозга при определённой деятельности, научении и воспроизведении навыков, можно «снять» посредством МРТ, шапочек из фольги с электродами, электроэнцефалограмм. Да, уже есть понимание, что моторные и когнитивные навыки записываются по-разному.
Но, до понимания того, в каких именно группах нейронов записывается информация, как именно она кодируется и считывается — пока что очень далеко. Мы не имеем представления о том, что именно и куда подключать, и в каком формате это считывать или передавать.
Хуже того, степень сложности информационной системы внутри нашего черепа такова, что невозможность «вскрытия» её работы может носить фундаментальный характер. Между десятками миллиардов нейронов мозга – триллионы связей. Каждый человеческий мозг, даже очень тупого человека — это нейросеть поразительной сложности.
А ведь даже созданные учёными и инженерами искусственные нейросети до сих пор в значительной степени остаются «чёрными ящиками». Да, мы приблизительно понимаем логику их работы, мы можем с той или иной вероятностью предугадать, что получим на выходе, как она будет действовать — но у нас нет точного понимания, что именно происходит между вводом в неё информации и тем, что получаем на выходе.
Происходящие в сколько-то серьёзной искусственной нейросети процессы крайне сложны, хаотичны, непредсказуемы. Да, базовый уровень того, как это работает на элементарных шагах, на уровне обмена информацией между слоями вполне понятен — но дальше начинается обвальное нарастание сложности процессов. Для их точного анализа и воспроизведения в классической «цифре» нужны огромные вычислительные мощности. Проблемой оказывается даже банально отследить и зафиксировать всё происходящее.
В случае с человеческим мозгом проблема оказывается сложнее на многие порядки. Рано или поздно мы, скорее всего, даже сможем создать полную искусственную модель человеческого мозга, и она даже будет работать… но, если судить на основе имеющихся сейчас данных и представлений о процессах, это вряд ли поможет нам понять, как именно она при этом функционирует.
После понимания этого к концу 2010-х зашли в некоторый тупик амбициозные проекты: Blue Brain Project от IBM и технического института Лозанны с суперкомпьютером Magerit; американская федеральная BRAIN Initiative с участием DARPA и IARPA, Human Brain Project от швейцарцев и ЕС. Хотя последний ещё на старте закладывал на каждый год выработку 300 эксабайтов (миллионов терабайтов) новой информации.
Хуже того: есть основания полагать, что обработка и кодирование информации в мозгу разных людей могут очень сильно отличаться. То, что будет справедливо и работать для одного человека, для другого даст совсем другой эффект или не даст никакого.
Да, очень активно развиваются разработки в области прямого сопряжения нервной системы с машинами. Американцы из Cyberkinetics сопрягали нейроны мозга с протезами через систему BrainGate уже в 2004 году. В начале этого года европейским учёным удалось передать изображение обезьяне прямо в мозг по электродам.
Но в этом и подобных случаях речь идёт либо о моторных функциях, управлении нервными импульсами манипуляторами, протезами и так далее; либо о сенсорных — скажем, об искусственных системах зрения. Но даже в этом случае многое в сопряжении электродов и нейронов оказывается индивидуальным для каждого конкретного человека.
А ведь в этом случае мы хотя бы имеем понимание, что и к каким нервным цепочкам нужно подключать, или как считывать активность зон мозга в более продвинутых вариантах. В случае прямого сопряжения мозга с компьютером для обмена структурированной информацией даже на этот вопрос мы ответить не можем даже приблизительно. Хуже того, барьер между привычными нам машинными кодами и «кодами» биологической нейросети человеческого мозга может оказаться фундаментально непреодолимым.
Что же касается обучения вождению вертолёта за пару секунд — такое упирается не только в вопрос сопряжения, но и в вопрос биологии. Нейронные связи, формируемые при освоении новой информации, нужно банально вырастить на клеточном уровне. Что требует не слишком большого, но всё же времени.
И это ещё не учитывая того, что на нейронные взаимосвязи в мозгу «завязана» в огромной степени ещё и наша эмоциональная сфера. Даже если гипотетически допустить, что люди научились грузить информацию из компьютера прямо в свой мозг — такое вмешательство извне может сопровождаться настолько причудливыми и непредсказуемыми последствиями для сложнейшей и глубоко взаимосвязанной системы мозга, что галлюцинации на фоне паранойи с биполяркой могут оказаться ещё лёгкими «побочками».
С тех пор, как мы брали то интервью, появился ряд новостей в продолжение этой темы. К примеру, в июле 2019-го Илон Маск объявил, что его проект Neuralink таки сумел подключить машину к мозгу. Речь шла о вживлении в мозг очень полимерных «нитей» толщиной в 4 микрометра, аккуратно обходивших при внедрении кровеносные сосуды с помощью специально разработанного робота. Данные с «нитей» идут на чип, откуда они уже снимаются через USB-C.
Эти исследования Neuralink продолжает и развивает по сей день, и традиционно Илон Маск обещает фундаментальные прорывы. Ну а пока что на повестке — модные и стильные нейроимпланты с управлением через Bluetooth, усовершенствованные чипы Link с индуктивной подзарядкой, и продвинутые хирургические роботы — которую нашпигуют ваш мозг полимерными проводами так быстро и аккуратно, что в тот же день вас уже смогут выписать домой ходячим киберпанком.
Однако по сути наработки Neuralink также касаются именно моторных и сенсорных функций. Сопряжения нейронов, отвечающих за приём информации от органов чувств и передачу импульсов на мышцы, с электродами машин, напрямую или посредством «увязки» активности определённых групп нейронов с определёнными же действиями.
Это очень важное и перспективное направление, оно может как минимум помочь многим миллионам людей, имеющих проблемы со здоровьем — но всё же оно не является Тем Самым прямым сопряжением мозга с машиной на уровне передачи структурированной информации, а не моторных или сенсорных импульсов. Это, в общем и целом, всё ещё условные «электроды» — хотя Neuralink удалось на этом направлении добиться заметных успехов и прорывов в технических решениях.
Сюда же относятся и рекламируемые сейчас Neuralink и их конкурентами из Synchron наработки в области «прямого управления компьютером через мозг»: по сути, это тоже скорее маркетинговый трюк вокруг уже понятной технологии, а не фундаментальные прорывы. Человек не получает информации «прямо в мозг» через электроды, он смотрит на дисплей и работает с информацией на нём примерно так же, как действовал бы посредством клавиатуры, мыши и сенсорного экрана.
Впрочем, попытки создать интегральные схемы по преобразованиям импульсов нейронов мозга в бинарный код компанией Маска предпринимались — но как раз они имели крайне сомнительные успехи, и также упёрлись в необходимость обработки огромных объёмов данных. К тому же Neuralink сотрясают внутренние конфликты, и ряд ведущих учёных покинули проект уже к лету 2020-го.
Впрочем, с другой стороны, история науки знает немало поразительных прорывов и открытий. Ещё на памяти наших дедов и бабушек немыслимые вещи стали научным мейнстримом или даже прочно вошли в наш быт.
За прошедшие пару лет активное использование и изучение нейросетей существенно улучшили понимание того, как они работают с графической, текстовой и звуковой информацией при её анализе и генерации. Эти наработки по распознаванию и созданию образов уже вовсю используются на практике, нарабатывается огромный практический опыт – а ведь то, как нейросети работают с информацией, достаточно сходно с тем, что делает человеческий мозг.
Мы всё ещё крайне далеки от того, чтобы через сколь угодно продвинутые электроды прочитать чьи-то мысли или загрузить себе в голову всего «Гарри Поттера». На пути к этому стоят не только технические сложности и нехватка знаний, но и проблемы фундаментального характера.
И всё же совсем отрицать шансы человечества на полноценные нейроинтерфейсы где-нибудь в XXII или XXIII веке вряд ли стоит.