Нейроны мозга человека сильно отличаются от нейронов других млекопитающих

Моя цель - предложение широкого ассортимента товаров и услуг на постоянно высоком качестве обслуживания по самым выгодным ценам.

Прежде чем перейти к статье, хочу вам представить, экономическую онлайн игру Brave Knights, в которой вы можете играть и зарабатывать. Регистируйтесь, играйте и зарабатывайте!

Импульсы нейронов вырабатываются белками, которые контролируют поток ионов, благодаря чему эти белки называют ионными каналами. Нейробиологи MIT показали, что количество ионных каналов в нейронах человека гораздо меньше, чем у других млекопитающих. За подробностями приглашаем под кат, пока у нас начинается флагманский курс Data Science.


Вот что рассказывает о своём открытии Марк Харнетт, доцент кафедры мозга и когнитивных наук Института исследования мозга Макговерна при Массачусетском технологическом институте и старший автор исследования:

«Если мозг может сэкономить энергию за счёт снижения плотности ионных каналов, то потратить её он может на другие процессы в нейронах или в цепях». 

Учёные выявили «строительный план», который наблюдается у всех видов, кроме человека. Они обнаружили, что с увеличением размера нейронов увеличивается и плотность нейронных каналов в них. Но нейроны человека оказались ярким исключением.

«Предыдущие сравнительные исследования показали, что человеческий мозг устроен так же, как мозг других млекопитающих, поэтому мы удивились, обнаружив убедительные доказательства, что человеческие нейроны особенные», — рассказывает бывший аспирант MIT Лу Болье-Ларош, — ведущий автор опубликованного в Nature исследования. 

План строения нейронов

Нейроны в мозге млекопитающих получают электрические сигналы от тысяч других клеток, и от этого зависит, будут ли они подавать электрический импульс, который также называют потенциалом действия.

В 2018 году Харнетт и Болье-Ларош обнаружили, что нейроны человека и крысы различаются электрическими свойствами, прежде всего в дендритах. Дендриты — древовидные антенны, которые обрабатывают данные от других клеток. Ранее считалось, что плотность ионных каналов нейронов постоянна у всех видов, но выяснилось, что у человека она ниже, чем у других млекопитающих.

В новом исследовании Харнетт и Болье-Ларош сравнили нейроны различных видов млекопитающих, чтобы понять, можно ли найти определяющие экспрессию ионных каналов закономерности. Они изучали два типа калиевых каналов, связанных с напряжением, и HCN-канал, который в пятом слое пирамидальных нейронов проводит и калий, и натрий.

Для исследования учёные взяли ткани мозга 10 видов млекопитающих: этрусских землероек, песчанок, мышей, крыс, морских свинок, хорьков, кроликов, мармозеток, макак, а также ткани страдающих эпилепсией людей, которые остались после операции. Так Харнетт и Болье-Ларош охватили диапазон толщины коры и размеров нейронов царства млекопитающих, а исследование стало самым масштабным в своём роде.

Почти у всех перечисленных видов млекопитающих с увеличением размера нейронов увеличивалась и плотность ионных каналов. Исключением оказались нейроны человека: плотность ионных каналов в них намного меньше ожидаемой.

По словам Харнетта, увеличение плотности каналов у разных видов удивляет, поскольку чем больше каналов, тем больше энергии требуется для перекачки ионов в клетку и из клетки. Ситуация прояснилась, когда исследователи обратили внимание на количество каналов в общем объёме коры головного мозга.

В крошечном мозге этрусской землеройки, который заполнен маленькими нейронами, мозговых клеток больше, чем в том же объёме мозга кролика. При этом у кролика гораздо больше нейронов в целом, а плотность ионных каналов его мозга выше. Проще говоря, плотность каналов в одинаковом объёме ткани одинакова у обоих видов. Это верно для всех перечисленных видов, кроме человека.

«Похоже, что кора головного мозга пытается сохранить количество ионных каналов на единицу объёма одинаковым у всех видов. Иными словами, для данного объёма коры энергетические затраты одинаковы, по крайней мере в случае ионных каналов».

Возможная причина — энергия

Учёные полагают, что столь низкая плотность ионных каналов могла возникнуть как способ экономить энергию на перекачке ионов. Сохранённая энергия позволяет, к примеру, создавать сложные синаптические связи между нейронами или быстрее генерировать потенциалы действия. 

«Мы думаем, что люди в процессе эволюции преодолели это ограничение, которое влияло на размер коры, и стали тратить меньше АТФ по сравнению с другими видами», — рассказывает Харнетт. 

Харнетт надеется понять, куда может уходить сэкономленная энергия, существуют ли мутации, которые помогают коре мозга человека достигать высокой эффективности и снижается ли плотность ионных каналов у приматов. А пока учёные разбираются с нейронами мозга, обратите внимание на краткие программы наших курсов, чтобы с помощью искусственных нейросетей научиться решать проблемы бизнеса.

Другие профессии и курсы
Источник: https://habr.com/ru/company/skillfactory/blog/589293/


Интересные статьи

Интересные статьи

Майкл Сайбл — сооснователь (в 25 лет) стартапов Justin.tv/Twitch (капитализация $15 млрд) и Socialcam, член правления Reddit. Ex-CEO Y Combinator. Когда я проводил «офисные часы» д...
Даже выбирая заголовок для этой статьи пришлось столкнуться с дилеммой относительно правильности использованной терминологии. «Инвалид», «Человек с ограниченными возможностями», «Чело...
Однажды наступит время, когда мы сможем узнать всё обо всём, избежать бОльшую часть всевозможных проблем, жить в гармонии с природой и окружающими людьми, наслаждаясь каж...
Всем привет! Продолжаем дайджесты новостей и других материалов о свободном и открытом ПО и немного о железе. Всё самое главное про пингвинов и не только, в России и мире. В этом вы...
Гиби сидит перед камерой. У нее в руках баночка с витаминами. Вы видите и слышите, как она постукивает по ней подушечками пальцев. Еле заметные звуки от прикосновений сливаются в единый поток. От...