Удаленная отладка приложений Kubernetes с использованием Visual Studio Code

Моя цель - предложение широкого ассортимента товаров и услуг на постоянно высоком качестве обслуживания по самым выгодным ценам.

Прежде чем перейти к статье, хочу вам представить, экономическую онлайн игру Brave Knights, в которой вы можете играть и зарабатывать. Регистируйтесь, играйте и зарабатывайте!

Отладка в контейнерной среде – дело не самое простое, поэтому разработчики зачастую прибегают к неэффективным методам локализации ошибок на этапе развертывания. Допустим, вам надо отладить Kubernetes-оператор, потому что согласование кластера (reconciliation process) выполняется как-то не так или сам оператор работает неправильно. Чтобы понять, что происходит в продакшен-кластере, можно развернуть этот оператор на локальном Kubernetes-кластере, который крутится на вашем ноутбуке. Затем надо будет написать соответствующий код для отладки оператора, собрать новый отладочный образ, развернуть его на локальном кластере, и, наконец, отследить вывод и журналы на предмет информации, которая поможет исправить ошибку. Долго? Да, долго. Так что быстрее и красивее будет использовать отладчик на удаленном сервере, задав точки останова для поиска причин неполадок.

Именно этот, второй и красивый, вариант мы рассмотрим сегодня и покажем, как запускать отладчик на кластере Kubernetes через IDE-среду Visual Studio Code (VS Code). В качестве приложения у нас будет программа на Go, но всё изложенное вполне применимо и к другим языкам программирования и отладчикам.

Какие есть варианты отладки

Для начала разберем упомянутые выше методы отладки, чтобы понять, в чем красота второго варианта.

Отладка через вывод

Контроль вывода – это самый простой способ развертывания и отладки приложений и операторов. Вам просто нужно продумать, где в коде расставить контрольные точки и добавить в них команды вывода отладочной информации.

Проблема в том, что каждый раз, когда вы захотите добавить, убрать или изменить такой вывод, придется заново пересобирать образ – а на это требуется время. Плюс, добавьте время на то, чтобы развернуть оператор на кластере, прежде чем выполнять тестирование.

Кроме того, в циклах согласования для комплексных операторов (тысячи и более строк на цикл) трудно бывает сразу определиться, какая именно информация понадобится для отладки. В результате, вам понадобится несколько попыток на то, чтобы локализовать проблему, и лишь потом уже приступить к отладке. Кроме того, при таком способе легко упустить из виду важные (с отладочной точки зрения) места в коде и не вставить туда команды вывода отладочной информации. В общем, при таком варианте отладки можно потерять массу времени, особенно, если вы не очень хорошо разбираетесь в отлаживаемом коде.

Отладка на удаленном сервере

Суть этого метода в том, чтобы использовать классический отладчик для получения информации, помогающей быстро понять причину проблемы. Процесс, который мы рассматриваем в этой статье, выполняется на удаленном сервере в среде Kubernetes, допустим, в промежуточной (staging) среде, которая эмулирует продакшен. Более того, вы создаете образы одновременно с тем, как вносите исправления в код, раз за разом развертывая оператор, и тем самым сокращаете время получения отладочной информации.

Итак, ключевые особенности метода удаленной отладки:

  • Выполняется удаленно, в тестовой, промежуточно или продакшен-среде.

  • Используется интерактивный отладчик (в нашем случае, это Delve для программ на Go).

  • Автоматическая сборка и развертывание образов при запуске отладчика.

А теперь подробно рассмотрим, как организовать удаленную отладку.

Предварительные требования

Расскажем, как настроить среду и инструменты для нашего приложения-примера. Мы будем использовать кластер Kubernetes на удаленном сервере и с помощью одного расширения для VS Code будем удаленной запускать там отладчик и наше приложение. Для этого мы будем использовать следующую среду:

  • Ноутбук разработчика:

    • ОС: macOS Big Sur 11.6

    • VS Code IDE и расширения

На ноутбуке установлена VS Code, но без инструментов развёртывания, вроде Docker, kubectl, и т. п.

  • Сервер (hostname alkmini):

    • Linux (Fedora 5.11.8-200.fc33.x86_64)

    • SSH-server

    • Работающий Docker daemon

    • kubectl и oc (интерфейс командной строки для Red Hat OpenShift)

    • Delve (отладчик для Go)

    • Кластер Kubernetes (в нашем примере, с использованием minikube)

Для удаленного сервера также можно использовать промежуточный кластер, локальный кластер или какую-то другую конфигурацию. Здесь важно вот что:

  • На локальной машине вам нужна только среда разработки.

  • На удаленном сервер среда разработки не нужна.

Установка необходимых инструментов и расширений VS Code

Первым делом установим расширения VS Code, чтобы потом запускать всё удаленно.

Расширение Remote - SSH

Это расширение позволяет использовать VS Code на вашем ноутбуке для работы на удаленном сервере так, как будто вы работаете на своей локальной машине. Расширение использует SSH для подключения к удаленному серверу и выполнения команд на нем, а также для использования других расширений VS Code.

Расширение Remote - SSH устанавливается из магазина приложений Visual Studio.

Добавим в него наш сервер и откроем папку как рабочую область, чтобы начать работать удаленно. Добавим информацию о хосте и проверим, что у нас есть SSH-доступ к нему (через ранее добавленный SSH ключ). Затем переходим к папке, которую хотим добавить, как показано на Рис.1.

Рис. 1. Расширение Remote - SSH обеспечивает доступ к файлам на удаленных системах, как будто они расположены на локальной машине.
Рис. 1. Расширение Remote - SSH обеспечивает доступ к файлам на удаленных системах, как будто они расположены на локальной машине.

О том, что вы работает удаленно, информирует зеленый индикатор SSH-соединения в левом нижнем углу, как показано на Рис. 2.

Рис. 2. В режиме удаленной работы в левом нижнем углу экрана отображается SSH-соединение.
Рис. 2. В режиме удаленной работы в левом нижнем углу экрана отображается SSH-соединение.

Теперь всё, что вы делаете на своем ноутбуке в редакторе VS Code, выполняется на удаленном сервере.

Продумайте, какие расширения нужны вам на удаленном сервере. Скорее всего, это лишь часть тех расширений, которые установлены на локальной системе.

Расширение Cloud Code Kubernetes

Это расширение обеспечивает непрерывную локальную обратную связь с вашим проектом в процессе редактирования, сборки, развертывания и запуска приложений локально или в облаке. Расширение взаимодействует с контейнерными инструментами командной строки Google, такими как Skaffold, minikube и kubectl. Cloud Code изначально был разработан для использования с Google Cloud Platform, но теперь работает на любых кластерах Kubernetes, в частности здесь мы используем на Kubernetes-кластере minikube.

Расширение Cloud Code устанавливается из магазина приложений Visual Studio.

Примечание. На момент написания этой статьи в последней версии Cloud Code была обнаружена ошибка, поэтому надо устанавливать предыдущую версию Cloud Code 1.14.1.

Delve

Delve (dlv) –это официальный отладчик для языка программирования Go. Он удобен как в плане вызова, так и плане использования, и предоставляет простой и вместе с тем полнофункциональный инструмент отладки для Go. Если вы используете отладчик, то, скорее всего, дела идут не очень хорошо. Поэтому Delve, насколько это возможно, постарается не мешать вам.

Delve устанавливается из репозитория GitHub следующим образом:

bash
$ git clone https://github.com/go-delve/delve
$ cd delve
$ go install github.com/go-delve/delve/cmd/dlv

Чтобы отлаживать приложение на удаленном сервере с локальной машины, используя редактор VS Code и расширение Remote – SSH, на удаленном сервере должен быть запущен отладчик Delve.

Конфигурация

В этом разделе мы в пошагового режиме разберем удаленную отладку. А также рассмотрим репозиторий и конфигурации, необходимые для интерактивной отладки приложения в кластере Kubernetes.

Репозиторий

Загрузить пример приложения Go можно из репозитория GitHub. Содержимое этого репозитория следующее:

alknopfler:alkmini : ~/projects/src/github.com/alknopfler/go-remote-debug-delve {master}
$ tree .
.
|-- .vscode
|   |-- settings.json
|   |-- launch.json
├── docker
│   └── debug
│       └── Dockerfile
├── go.mod
├── k8s
│   └── deployment.yml
├── main.go
├── Makefile
├── README.md
└── skaffold.yaml

Ключевые элементы здесь следующие:

  • Папка docker – содержит Dockerfile для генерации образа, который мы затем отправим в реестр Quay.io.

  • Папка k8s – содержит манифест, описывающий развертывание приложения.

  • Main.go – основной файл кода приложения.

  • Skaffold.yaml – конфигурационный файл, используемый для сборки и развертывания приложения.

  • .vscode/launch.json – конфигурация для расширения Cloud Code.

Настройка Cloud Code

Откроем файл .vscode/launch.json и добавим параметры конфигурации, отмеченные стрелками на Рис. 3 (мы опишем эти параметры ниже).

Рис.3. Добавление параметров конфигурации для расширения Cloud Code.
Рис.3. Добавление параметров конфигурации для расширения Cloud Code.

Параметр Attach (Go) to k8s Pod

Мы используем эту опцию, чтобы подключаться к запущенному pod’у в кластере Kubernetes для отладки. Если образ был собран с установленным отладчиком Delve, то в коде можно задать точку останова. Отладка приложения выполняется путем подключения к его podselector’у и порту, как показано в следующей конфигурации:

yaml
{
            "name": "Attach to Kubernetes Pod (Go)",
            "type": "cloudcode.kubernetes",
            "request": "attach",
            "language": "Go",
            "debugPort": 40000,
            "podSelector": {
                "app": "server-debug"
            },
            "localRoot": "${workspaceFolder}",
            "remotePath": "",
            "remoteRoot": "/"
}

При этом надо обязательно настроить свойства remotePath и remoteRoot. Иначе, к pod’у можно будет подключаться, но не отлаживаться, поскольку точка останова окажется «неверифицированной».

Параметр Run/Debug Kubernetes App

Конфигурация для этой опции выглядит следующим образом:

`yaml
{
            "name": "Kubernetes: Run/Debug",
            "type": "cloudcode.kubernetes",
            "request": "launch",
            "autoStop": false,
            "skaffoldConfig": "${workspaceFolder}/skaffold.yaml",
            "watch": true,
            "cleanUp": true,
            "portForward": true,
            "imageRegistry": "quay.io",
            "debug": [
                {
                    "image": "quay.io/amorgant/server-debug",
                    "containerName": "server-debug",
                    "sourceFileMap": {
                        "${workspaceFolder}": ""
                    }
                }
            ]
        },

Поясним некоторые моменты:

  • autoStop: – если задано true, сеанс отладки автоматически прекращается при завершении работы приложения.

  • SkaffoldConfig: – это конфигурационный файл, с помощью которого происходит непрерывная сборка и развертывание приложения.

  • watch: – это самая важная опция для интерактивной отладки. Она уведомляет Skaffold об изменениях в коде, чтобы Skaffold мог выполнять пересборку и повторно развёртывание образа, когда мы отлаживаем и меняем код. Кроме того, если включена опция auto-save, этот процесс будет работать постоянно.

  • cleanUp: – это опция возврата сервера в чистое состоянии по завершении сеанса. Иначе говоря, уничтожения контейнеров и образов, созданных Skaffold’ом после того, как вы останавливаете отладчик.

  • portForward: – эта опция позволяет запускать отладчик удаленно, перенаправляя порт в локальную среду.

  • debug/image: – это образ, который будет собираться с уже установленным в него отладчиком Delve и нашим приложением.

Если вкратце, то для отладки работающего pod’а можно использовать расширение Cloud Code вместе с опцией Attach (Go) to k8s Pod. Когда вы что-то меняете в своем коде, Skaffold выполняет пересборку и повторное развертывание образа, чтобы вы тут же венмогли продолжить отладку. Сочетание двух этих опций и обеспечивает волшебство удаленной отладки приложений и операторов Kubernetes.

Настройка Skaffold

Skaffold – это очень интересный инструмент для создания и развертывания приложений непосредственно с помощью уже рассмотренного расширения Cloud Code. Вам достаточно лишь скопировать манифест, чтобы создать конвейера для своего приложения и запустить расширение Cloud Code, чтобы использовать этот манифеста. У Skaffold тоже есть ряд важных опций, которые мы рассмотрим чуть ниже.

На Рис. 4 показана схема работы Skaffoldпри сборке и развертывании приложений. Этот процесс не происходит мгновенно, поскольку сборка занимает некоторое ненулевое время, но тем менее он обеспечивает итеративную отладку и пересборку, не заставляя останавливать отладчик.

Рис. 4. Схема работы Skaffold при автоматизированной сборке и развертывании.
Рис. 4. Схема работы Skaffold при автоматизированной сборке и развертывании.

При этом мы используем следующий конфигурационный файл:

yaml
apiVersion: skaffold/v2beta19
kind: Config
build:
  artifacts:
  - image: quay.io/amorgant/server-debug
    buildpacks:
      builder: gcr.io/buildpacks/builder:v1
    context: .
    sync:
      auto: true
  local:
    push: true
deploy:
  kubectl:
    manifests:
    - k8s/deployment.yml

На этапе сборки Skaffold можно использовать различные builder’ы, включая такие широко распространенные инструменты, как Dockerfile, Maven и Buildpacks, а также настраиваемые пользовательские скрипты. В нашем примере используется Buildpacks, который автоматически детектирует ваш Dockerfile и использует его для сборки:

yaml
    buildpacks:
      builder: gcr.io/buildpacks/builder:v1

В больших проектах, где есть несколько этапов сборки со сложными Makefiles, можно использовать конфигурацию вроде такой:

yaml
buildpacks:
 custom:
      buildCommand: |
        sudo -S skipper make update-debug-minimal
        docker tag quay.io/ocpmetal/assisted-service:latest quay.io/amorgant/assisted-service:latest
        docker push quay.io/amorgant/assisted-service:latest

Также сборку можно выполнить, используя свою спецификацию Dockerfile, например, так:

yaml
  docker:
    dockerfile: deploy/Dockerfile

Для этапе развертывания Skaffold также можно использовать разные deployer’ы: Kubernetes, Helm, Kustomize и Docker.

Конфигурация Dockerfile для отладки

Для отладки приложения, его образ надо собирать вместе с Delve, чтобы иметь возможность запускать приложение через точку входа (entry point) команды dlv:

Dockerfile
FROM golang:1.16 AS build
WORKDIR /
COPY . .
RUN CGO_ENABLED=0 go get -ldflags "-s -w -extldflags '-static'" github.com/go-delve/delve/cmd/dlv
RUN CGO_ENABLED=0 go build -gcflags "all=-N -l" -o ./app
 
FROM alpine
WORKDIR /
COPY . .
COPY --from=build /go/bin/dlv dlv
COPY --from=build /app app
ENTRYPOINT [ "/dlv" , "--listen=:40000", "--headless=true", "--api-version=2", "--accept-multiclient", "exec", "/app"]]

Точка входа запускает приложение с помощью команды dlv, что позволяет отлаживать его на удаленном сервере.

Развертывание Kubernetes

В нашем примере используется базовое развертывание приложения Kubernetes. Это простое развертывание с одним контейнером с использованием образа, который мы только что создали:

yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: server-debug
spec:
  selector:
    matchLabels:
      app: server-debug
  template:
    metadata:
      labels:
        app: server-debug
    spec:
      containers:
      - name: server-debug
        image: quay.io/amorgant/server-debug
        imagePullPolicy: Always
        resources:
          requests:
            memory: "128Mi"
            cpu: "100m"
          limits:
            memory: "256Mi"
            cpu: "500m"
        ports:
        - containerPort: 8080

Удаленная отладка в Kubernetes – демо

Как только вся конфигурация будет готова, откроем расширение Cloud Code и выполним следующие шаги.

Сначала проверим, что кластер готов, и мы можем обращаться к нему из VS Code и расширения Cloud Code, как показано на Рис. 5.

Рис. 5. Развертывания и pod’ы доступны из VS Code.
Рис. 5. Развертывания и pod’ы доступны из VS Code.

Затем зададим в коде точку останова в коде, как показано на Рис. 6.

Рис. 6. Задаем точку останова в Main.go.
Рис. 6. Задаем точку останова в Main.go.

А теперь щелкаем мышкой кнопку Debug on Kubernetes, чтобы запустить процесс, utton to как показано на Рис.7.

Рис. 7. Кнопка Debug on Kubernetes в расширении Cloud Code.
Рис. 7. Кнопка Debug on Kubernetes в расширении Cloud Code.

Теперь, когда наше приложение запускается, оно работает через отладчик, как показано в этом видео:

Ограничения и быстрые исправления

Чтобы воспроизвести описанный выше процесс у себя, надо скопировать проект внутрь Dockerfile, поскольку отладчику нужен доступ к стеку, чтобы знать, какая трасса является трассой для отладки. Делается это так:

WORKDIR /
COPY . .

Полезные ресурсы

Основные инструменты, упоминавшиеся в этой статье:

  • VScode Remote Explorer

  • CРасширение Cloud Code

  • Go-отладчик Delve

  • Билдеры Skaffold

  • Видео отладочного сеанса

Источник: https://habr.com/ru/company/redhatrussia/blog/597529/


Интересные статьи

Интересные статьи

В первой части мы сформулировали, из каких компонентов состоит система автодополнения, обсудили способы ее использования и требования к качеству. Теперь давайте разберемся, зачем там нужно машинное об...
С выпуском .NET 5 миграция решений из .NET Framework увеличилась. В частности, мы начали наблюдать перемещение очень крупных решений. Чтобы обеспечить максимальное удобст...
В этом переводе расскажем про альтернативные редакторы кода, которые ничуть не уступают VS Code, а при грамотном подборе расширений даже превосходят его. Редактор Visual Studio...
Angular — это быстрый фреймворк. Он даёт разработчикам обширные возможности по улучшению производительности за счёт тонких настроек. Правда, программистам практически никогда не требуется делать ...
Последние десять лет движение open source является одним из ключевых факторов развития IT-отрасли и важной ее составной частью. Роль и место open source не только усиливается в виде роста колич...