Если гипотеза Римана не верна…

Моя цель - предложение широкого ассортимента товаров и услуг на постоянно высоком качестве обслуживания по самым выгодным ценам.

Как известно, в военное время значение косинуса может достигать трех. К счастью, это не касается простоты чисел - как ни бейся лбом об стену, число 17 простое и ни на что не делится, кроме себя и 1.

Или нет? Что, если мы грубо пошуруем ломиком в святая святых математики и подвигаем нетривиальные нули зета функции? Сдвинутся ли со своих мест простые числа? Вас ждут картинки и видео, и очень мало формул.

Я пропущу популярное изложение гипотезы Римана - это освещалось немыслимое количество раз. Перейдем сразу к концу: зная нетривиальные нули зета функции, можно 'обратным ходом' написать функцию, которая изображает pi(x) - 'prime counting function' - функцию, которая ступенчато увеличивается на единицу на каждом простом числе:

Там есть и маленькие ступеньки, их надо игнорировать, они соответствуют, в частности, степеням простых чисел. Если 'ловить' большие ступеньки, то мы получим магию:

После немыслимо большого количества операций с плавающей точкой, логарифмов и косинусов, мы получаем простые числа... То, что можно сосчитать на пальцах, но магия в том, что они в этот раз приходят со стороны, где в общем-то с теорией чисел ничего не связано.

Формулы для расчета я брал тут и там тоже есть интересная анимация. Итак, основной 'ход' функции pi(x) задается выражением:

Эта часть корректируется слагаемым, отвечающим за тривиальные и нетривиальные нули (нижняя формула):

Со вторым выражением у меня почему-то получались очень большие значения (увы, не понял, почему) и я воспользовался выражением, которое должно быть эквивалентно (только названо C а не T), для C надо взять сумму по всем нетривиальным корням:

Я скачал 100K корней и запустил программу. Теперь настало время ломика. Возьмем первый корень и будем его сдвигать 'вверх' (то есть увеличивая мнимую часть, а для сопряженного корня - уменьшать):

Теперь возьмем и подвинем так ВСЕ корни:

Заметьте, что ступеньки 'испортились', но остались на тех же местах. Сдвинуть простые числа можно только, если домножить мнимую часть нетривиальных корней на небольшую константу:

Наконец, пусть гипотеза Римана неверна. Сдвинем вещественную часть всех нетривиальных корней с их места, которое, как известно, 1/2:

Увы. Красивой анимации не будет. Ничего не поменялось, кроме третьей - четвертой цифры после запятой. Впрочем, это и неудивительно: если посмотреть формулы, то единственное место, где важна вещественная часть корня - это последняя формула, arg(Pk), но arg (фаза) и так почти вертикальна - даже для первого корня (0.5+14.13i) мнимая часть куда больше вещественной. Обратите внимание, что картинка выше не в масштабе. (Впрочем, может последняя формула выведена в предположении, что вещественная часть 0.5? Пусть более продвинутые коллеги меня поправят).

Итак, именно значения мнимой части определяют положения просты чисел, а знаменитая 'critical strip' в общем ни при чем.

Источник: https://habr.com/ru/post/655421/


Интересные статьи

Интересные статьи

Исследователи добились значительного прогресса в скорости конвергенции, точности и интерпретируемости решений визуального трансформера. За подробностями приглашаем под кат. Материалом из блога Google ...
Один из ключевых сценариев работы в CRM это общение с клиентом в удобном для него канале. По почте, по телефону, по SMS или в мессенджере. Особенно выделяется WhatsApp — интеграцию с ...
Многим геймерам по всему миру, заставшим эпоху Xbox 360, очень знакома ситуация, когда их консоль превращалась в сковороду, на которой можно было жарить яичницу. Подобная печальная ситуация в...
Если вы последние лет десять следите за обновлениями «коробочной версии» Битрикса (не 24), то давно уже заметили, что обновляется только модуль магазина и его окружение. Все остальные модули как ...
Регулярно бывая на сайтах фриланса в обеих ипостасях — как исполнителя, так и заказчика, я часто встречаю повторяющиеся мотивы в описании многих заданий, типа задач будет много «агентства и студи...