Современные поршневые двигатели внутреннего сгорания — крайне сложные системы, в состав которых входит большое количество элементов. Один из них — поршень, наиболее важная и специфическая деталь в современных двигателях. Для того, чтобы выдерживать значительные механические нагрузки и тепловые удары, поршень должен быть одновременно и легким, и прочным.
О задачах, которые приходится решать при конструировании и производстве поршней, а также о современных технологиях их упрочнения рассказывает основатель проекта ZENTORN (компания-резидент Инновационного центра “Сколково”), Дмитрий Лебедев.
Почему поршень настолько важен?
Как и говорилось выше, он должен быть легким и прочным, чтобы выдерживать все расчетные нагрузки. Кроме того, поршень должен обладать одновременно высокой термоциклической стойкостью основных рабочих поверхностей, износостойкостью и низким трением тронковой части при минимально возможном зазоре в цилиндре.
Зачем? Это очень важно для герметизации камеры сгорания топливно-воздушной смеси, с тем, чтобы избежать прорыва газов из камеры сгорания в картер, а также поступления масла в обратном направлении. В идеальном варианте расход масла должен быть минимальным, а детали двигателя должны работать в режиме жидкостного трения.
В большинстве случаев причиной выхода из строя ДВС является износ элементов:
- В бензиновом двигателе основные повреждения получает поршень из-за высокой температуры его нагрева и резких перепадов температур. При протекании рабочего процесса происходит снижение предела прочности материала.
- В дизельном двигателе износу подвергаются и детали цилиндро-поршневой группы (ЦПГ), и камера внутреннего сгорания. Причиной служат переменные напряжения, вызванные воздействием переменного давления газов в цилиндре в течение рабочего цикла.
- Низкочастотные колебания температуры поршня, связанные со сменой режимов работы двигателя; высокочастотные циклические термические колебания, обусловленные изменением температуры материала в поверхностном слое камеры сгорания в течение каждого рабочего цикла.
Из-за разрушения элементов проявляются три основные проблемы: падает мощность двигателя, увеличивается расход горючего и смазочных материалов, возрастает объем выбрасываемых вредных газов.
Неслучайно поршень является центром концентрации технических новшеств, которые заложены в конструкцию двигателя. В последние годы автопроизводители идут по пути оптимизации конструкции поршня и уменьшение его массы для снижения инерционности — активнее используют поршни без вставок и пазов. Это объясняется тем, что автомобильные двигатели последнего поколения часто оснащаются алюминиевым блоком цилиндров. Соответственно, поршни понадобилось облегчить без ухудшения их термозащитных, прочностных и других эксплуатационных характеристик.
Кроме того, были разработаны и эффективные методы получения заготовок поршней, включая штамповку (ковку) и «жидкую» штамповку. Все это дало возможность усовершенствовать поршни и технологию их производства.
Методы упрочнения поверхности поршней
Существует ряд методов, один из них — технология электрического осаждения на поверхности металлов электрохимических покрытий с применением различных композиций. Метод осаждения состоит в следующем: из раствора электролита на поверхность днища поршня осаждаются неметаллические включения (бориды, сульфиды, карбиды, оксиды и т.д). Благодаря атомарному воздействию на поверхностные слои алюминия, прочностные характеристики полученного пленочного покрытия превышает твердость основного металла, что повышает термостойкость и прочностные характеристики.
Перспективным методом упрочнения является микродуговое оксидирование (МДО). Он заключается в формировании в поверхностных слоях группы вентильных металлов керамических покрытий с уникальным комплексом свойств, значительно превосходящих по своим термоизоляционным и прочностным характеристикам основной металл. Отличительной особенностью процесса в появлении на границе металл-электролит микроплазменных разрядов – плазмохимическом и термическом воздействии.
Технология ZENTORN: применение стэка технологий
Когда резервы свойств материалов практически исчерпаны, а эксплуатационные потребности в увеличении литровой мощности и нагрузки на элементы цилиндропоршневой группы неуклонно растут, возникает необходимость решения комплексной задачи: повышения эксплуатационных характеристик без изменений конструкции двигателя.
Результатом решения технической задачи группой разработчиков технологии «ZENTORN» является модель поршневого ДВС со штампованным поршнем с нирезистовой вставкой и двухслойным термобарьерным керамическим покрытием.
Был применен стэк технологий:
- Метод микродугового оксидирования за счет поверхностного упрочнения сплавов, который позволил достичь увеличения термоциклической стойкости и обеспечить тепловую динамическую защиту камеры сгорания ДВС (дна поршня и сферы головки цилиндра).
- Для уменьшения износа канавки первого компрессионного кольца при помощи изотермической штамповки и порошковой металлургии была изготовлена вставки из чугуна (нирезиста), что уменьшило износ в паре трения: поршень-компрессионное кольцо. Получаемые заготовки характеризуются повышенными механическими свойствами, хорошей проработкой микроструктуры и минимальными припусками.
Технический эффект от использования разработки:
- повышение температуры в камере сгорания;
- увеличение полноты сгорания топлива;
- снижение уровня выбросов угарного газа (СО), углекислого газа (СО2) и углеводородов в окружающую среду (достигнута конверсия углеводородов до 40% для бензиновых двигателей);
- уменьшение тепловой нагрузки на систему охлаждения и другие детали двигателя (предельная термостойкость модификационного слоя составляет до 490 С в рабочем режиме, тепловой удар — до 2600 С, теплоизоляция материала подложки — до 1 Вт*К/М);
- увеличение КПД ДВС /возможно увеличение до 20% в форсированном режиме;
- повышение надежности, износостойкого и эффективности работы штампованных поршней ДВС, твердость модификационного слоя составляет— до 2500 HV по Викерсу;
- снижение общего веса и инерционности двигателя, по сравнению с двигателями со стальными и составными поршнями.
Эффективность технологии была проверена на серийном шестицилиндровом дизельном двигателе. Также были подтверждены улучшенные технико-эксплуатационные характеристики. На испытаниях двигатель форсировали до максимального давления рабочего процесса (до 170 кгс/см²). Это позволило получить прирост мощности двигателя 21% в сравнении с базовым (540 л.с.) без снижения степени сжатия. При этом двигатель остался в работоспособном состоянии.