Теория Графов. Часть 2 Смежность, инцидентность, петли

Моя цель - предложение широкого ассортимента товаров и услуг на постоянно высоком качестве обслуживания по самым выгодным ценам.

Ничего не сделано, если что-то осталось недоделанным. – Иоганн Гаусс

В этой статье:

  • Смежность и инцидентность

  • Петли

Смежность и инцидентность

Давайте рассмотрим самый обыкновенный неопределённый граф (Рисунок 1). В нем есть вершина Р и вершина К. Данные вершины являются смежными (adjacent), так как они соединены ребром РК.

Помимо этого, как мы видим, вершина К является концом ребра РК, а Р его началом, в таких случаях вершина К и Р называются инцидентными (incident) ребру РК.

Рисунок 1
Рисунок 1

Смежностью вершин графа – называется отношение между двумя вершинами, в котором существует ребро их соединяющее.

Инцидентность – это когда вершина a является началом или концом ребра t. Если мы добавим еще одну вершину b, то мы скажем, что вершина a и b инцидента ребру t.

Кроме вершин, смежность присутствует и у рёбер. Рёбра просто должны иметь общую вершину. В нашем случаи мы можем сказать, что ребро ДК является смежным ребру РК, так как у них есть общая вершина К.

Смежностью рёбер графа – называется отношение между двумя рёбрами, в котором существует вершина соединяющая их.

В связи с тем, что выше мы рассматривали неопределенный граф, то было неважно, с какого направления определять смежность и инцидентность. Вершина Р могла быть смежна вершине К, но также мы могли сказать, что вершина К смежна вершине Р.

В ориентированном графе все немного по-другому (Рисунок 2), так у нас имеется направление, которое мы не в силах поменять. Если вершина 1 смежна вершине 2, то вершина 2 не может быть смежна вершине 1. То же самое касается и инцидентности. Вершины 1 и 2 инцидентны ребру 12, наоборот не работает.

Рисунок 2
Рисунок 2

Петли

Петля – это ребро инцидентное одной и той же вершине. То есть вершина которая соединена сама с собой. На рисунке ниже мы видим, как это выглядит.

Петли
Петли

Заключение

В следующей статье я покажу, как с помощью матрицы задавать графы, а также покажу, что такое вес ребра.

P.S. Если вам показалось, что эта статья была очень, очень подробной или раздутой, то сообщите об этом в комментариях, так как в своих статьях я стремлюсь к тому, чтобы люди читающие их смогли понять описываемую мною тему. Неточности и предложения о темах также пишите в комментарии.

Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста.

Какие статьи хотели бы почитать?

  • 0,0%Известные экономисты0
  • 25,0%Коэффициент Джинни1
  • 0,0%Теория Игр0
  • 75,0%Народ требует продолжение графов!3
Источник: https://habr.com/ru/post/565998/


Интересные статьи

Интересные статьи

Как вы помните, в прошлой статье мне удалось стартануть linux на калькуляторе. Однако, работать на нём было невозможно, и я считаю это незачётом. Тогда я понял, что кроличья нора дост...
Предыдущая статья о родстере «Крым», созданным студентами Бауманки, вызвала большой интерес среди наших читателей. В новом материале мы хотим поделиться с вами еще большим объемом информа...
Статья о том, как упорядочить найм1. Информируем о вакансии2. Ведём до найма3. Автоматизируем скучное4. Оформляем и выводим на работу5. Отчитываемся по итогам6. Помогаем с адаптацией...
Приветствую во второй публикации цикла статей, посвященному Cisco ISE. В первой статье  были освещены преимущества и отличия Network Access Control (NAC) решений от стандартных ...
В интернет-магазинах, в том числе сделанных на готовых решениях 1C-Битрикс, часто неправильно реализован функционал быстрого заказа «Купить в 1 клик».