Выступает DMN, дирижирует ZeeBe: как использовать бизнес-правила в микросервисах

Моя цель - предложение широкого ассортимента товаров и услуг на постоянно высоком качестве обслуживания по самым выгодным ценам.

Прежде чем перейти к статье, хочу вам представить, экономическую онлайн игру Brave Knights, в которой вы можете играть и зарабатывать. Регистируйтесь, играйте и зарабатывайте!

Меня зовут Николай Первухин, я Senior Java Developer в Райффайзенбанке. Так сложилось, что, единожды попробовав бизнес-процессы на Camunda, я стал адептом этой технологии и стараюсь ее применять в проектах со сложной логикой. Действительно сама идея подкупает: рисуешь процесс в удобном GUI-редакторе (моделлере), а фреймворк выполняет эти действия по порядку, соблюдая большой спектр элементов нотации BPMN.  

К тому же в Camunda есть встроенная поддержка еще одной нотации — DMN (Decision Model and Notation): она позволяет в простой и понятной форме создавать таблицы принятия решений по входящим наборам данных.

Но чего-то все же не хватает... Может, добавим немного скорости?

Почему ускоряем процессы

В банковской сфере бизнес-процессы широко используются там, где довольно часто встречаются длинные, с нетривиальной логикой процессы взаимодействия как с клиентом, так и между банковскими подсистемами. 

Что обычно характеризует такие процессы:

  • от момента создания до завершения процесса может пройти несколько дней;

  • участвует большое количество сотрудников;

  • осуществляется интеграция со множеством банковских подсистем.

Фреймворк Camunda прекрасно справляется с такими задачами, однако, заглянем под капот: там находится классическая база данных для осуществления транзакционности.

Но что если к логической сложности добавляется еще и требование к быстродействию? В таких случаях база данных рано или поздно становится «узким горлышком»: большое количество процессов начинает создавать блокировки, и это в конечном итоге приводит к замедлению.

Отличные новости: воспользуемся ZeeBe

В июле 2019 года было официально объявлено, что после двух лет разработки фреймворк ZeeBe готов к использованию на боевой среде. ZeeBe специально разрабатывался под задачи highload и, по утверждению автора, был протестирован при 10 000 процессов в секунду. В отличие от Camunda, ядро фреймворка ZeeBe принципиально не использует базу данных — из него убраны все вспомогательные подсистемы, в том числе и процессор правил DMN.

В случаях, когда DMN все же необходим, он может быть добавлен как отдельное приложение. Именно такую архитектуру мы и рассматриваем в данной статье.

Итак, дано: 

  • микросервис, инициирующий событие и запускающий процесс (event-handler);

  • микросервис обработки бизнес-правил (rules-engine);

  • микросервис, эмулирующий действия (action).

Данные микросервисы могут быть запущены в неограниченном количестве экземпляров для того, чтобы справиться с динамической нагрузкой.

Из оркестрации у нас:

  • микросервис с брокером сообщений ZeeBe (zeebe);

  • микросервис визуализации работающих процессов simplemonitor (zeebe-simple-monitor).

А присматривать за всеми микросервисами будет кластер k8s.

Схема взаимодействия

С точки зрения бизнес-логики в примере будет рассмотрен следующий бизнес-сценарий:

  • из внешней системы происходит запрос в виде rest-обращения с передачей параметров;

  • запускается бизнес-процесс, который «пропускает» входящие параметры через бизнес-правило;

  • в зависимости от полученного решения из бизнес-правил запускается микросервис действий с различными параметрами.

Теперь поговорим подробнее о каждом микросервисе.

Микросервис zeebe

Данный микросервис состоит из брокера сообщений ZeeBe и экспортера сообщений для отображения в simple-monitor. Для ZeeBe используется готовая сборка, которую можно скачать с github. Подробно о сборке контейнера можно посмотреть в исходном коде в файле build.sh

Принцип ZeeBe — минимальное число  компонентов, входящих в ядро, поэтому по умолчанию ZeeBe — это брокер сообщений, работающий по схемам BPMN. Дополнительные модули подключаются отдельно: например, для отображения процессов в GUI понадобится экспортер (доступны разные экспортеры, к примеру, в ElasticSearch, в базу данных и т.п.).

В данном примере возьмем экспортер в Hazelcast. И подключим его: 

  • добавим zeebe-hazelcast-exporter-0.10.0-jar-with-dependencies.jar в папку exporters;

  • добавим в файл config/application.yamlследующие настройки:

exporters:
      hazelcast:
        className: io.zeebe.hazelcast.exporter.HazelcastExporter
        jarPath: exporters/zeebe-hazelcast-exporter-0.10.0-jar-with-dependencies.jar
        args:
          enabledValueTypes: "JOB,WORKFLOW_INSTANCE,DEPLOYMENT,INCIDENT,TIMER,VARIABLE,MESSAGE,MESSAGE_SUBSCRIPTION,MESSAGE_START_EVENT_SUBSCRIPTION"
          # Hazelcast port
          port: 5701

Данные активных процессов будут храниться в памяти, пока simplemonitor их не считает. Hazelcast будет доступен для подключения по порту 5701.

Микросервис zeebe-simplemonitor

Во фреймворке ZeeBe есть две версии GUI-интерфейса. Основная версия, Operate, обладает большим функционалом и удобным интерфейсом, однако, использование Operate ограничено специальной лицензией (доступна только версия для разработки, а лицензию для прода следует запрашивать у производителя).

Также есть облегченный вариант — simplemonitor (лицензируется по Apache License, Version 2.0)

Simplemonitor можно оформить тоже в виде микросервиса, который периодически подключается к порту hazelcast брокера ZeeBe и выгружает оттуда данные в свою базу данных. 

Можно выбрать любую базу данных Spring Data JDBC, в данном примере используется файловая h2, где настройки, как и в любом Spring Boot приложении, вынесены в application.yml

spring:
  datasource:
    url: jdbc:h2:file:/opt/simple-monitor/data/simple-monitor-db;DB_CLOSE_DELAY=-1

Микросервис event-handler 

Это первый сервис в цепочке, он принимает данные по rest и запускает процесс. При старте сервис осуществляет поиск файлов bpmn в папке ресурсов:

private void deploy() throws IOException {
        Arrays.stream(resourceResolver.getResources("classpath:workflow/*.bpmn"))
                .forEach(resource -> {
                    try {
                        zeebeClient.newDeployCommand().addResourceStream(resource.getInputStream(), resource.getFilename())
                                .send().join();
                        logger.info("Deployed: {}", resource.getFilename());
                    } catch (IOException e) {
                        logger.error(e.getMessage(), e);
                    }
                });
    }

Микросервис имеет endpoint, и для простоты принимает вызовы по rest. В нашем примере передаются 2 параметра, сумма и лимит:

http://адрес-сервиса:порт/start?sum=100&limit=500
@GetMapping
    public String getLoad(@RequestParam Integer sum, @RequestParam Double limit) throws JsonProcessingException {
        Map<String, Object> variables = new HashMap<>();
        variables.put("sum", sum);
        variables.put("limit", limit);
        zeebeService.startProcess(processName, variables);
        return "Process started";
    }

Следующий код отвечает за запуск процесса:

 public void startProcess(String processName, Map<String, Object> variables) throws JsonProcessingException {
         zeebeClient.newCreateInstanceCommand()
                .bpmnProcessId(processName)
                .latestVersion()
                .variables(variables)
                .send();
    }

Сам процесс нарисован в специальной программе ZeeBe modeler (почти копия редактора Camunda modeler) и сохраняется в формате bpmn в папке workflow в ресурсах микросервиса. Графически процесс выглядит как:

У каждой задачи (обозначаем прямоугольником на схеме) есть свой тип задач, который устанавливается в свойствах задачи, например, для запуска правил:

Каждый дополнительный микросервис в данном примере будет использовать свой тип задач. Тип задач очень похож на очередь в Kafka: при возникновении задач к нему могут подключаться подписчики — worker’ы.

После старта процесс продвинется на один шаг, и появится сообщение типа DMN.

Микросервис rules-engine

Благодаря прекрасной модульной архитектуре Camunda есть возможность использовать в своем приложении (отдельно от самого фреймворка Camunda) движок правил принятия решения.

Для его интеграции с вашим приложением достаточно добавить его в зависимости maven:

        <dependency>
            <groupId>org.camunda.bpm.dmn</groupId>
            <artifactId>camunda-engine-dmn</artifactId>
            <version>${camunda.version}</version>
        </dependency>

Сами правила создаются в специальном графическом редакторе Camunda modeler. Одна диаграмма DMN имеет два вида отображения.

Entity Relation Diagram (вид сверху) показывает зависимости правил друг от друга и от внешних параметров:

На такой диаграмме можно представить одно или несколько бизнес-правил. В текущем примере оно одно зависит от двух параметров — сумма и лимит. Представление на этой диаграмме параметров и комментариев необязательно, но является хорошим стилем оформления.

Само же бизнес-правило содержит более детальный вид:

Как видно из примера выше, бизнес-правило представляется в виде таблицы, в которой перечислены входящие и результирующие параметры. Инструмент достаточно богатый, и можно использовать различные методы сравнения, диапазоны, множества, несколько типов политик правил (первое совпадение, множественное, последовательность по диаграмме и т.п.). Такая диаграмма сохраняется в виде файла dmn. 

Посмотрим на примере, где такой файл располагается в папке dmn-models в ресурсах микросервиса. Для регистрации диаграммы при старте микросервиса происходит его однократная загрузка:

 public void init() throws IOException {
        Arrays.stream(resourceResolver.getResources("classpath:dmn-models/*.dmn"))
                .forEach(resource -> {
                    try {
                        logger.debug("loading model: {}", resource.getFilename());
                        final DmnModelInstance dmnModel = Dmn.readModelFromStream((InputStream) Resources
                                .getResource("dmn-models/" + resource.getFilename()).getContent());
                        dmnEngine.parseDecisions(dmnModel).forEach(decision -> {
                            logger.debug("Found decision with id '{}' in file: {}", decision.getKey(),
                                    resource.getFilename());
                            registry.put(decision.getKey(), decision);
                        });
                    } catch (IOException e) {
                        logger.error("Error parsing dmn: {}", resource, e);
                    }
        });
    }

Для того, чтобы подписаться на сообщения от ZeeBe, требуется осуществить регистрацию worker’а:

private void subscribeToDMNJob() {
        zeebeClient.newWorker().jobType(String.valueOf(jobWorker)).handler(
                (jobClient, activatedJob) -> {
                    logger.debug("processing DMN");
                    final String decisionId = readHeader(activatedJob, DECISION_ID_HEADER);
                    final Map<String, Object> variables = activatedJob.getVariablesAsMap();
                    DmnDecisionResult decisionResult = camundaService.evaluateDecision(decisionId, variables);
                    if (decisionResult.size() == 1) {
                        if (decisionResult.get(0).containsKey(RESULT_DECISION_FIELD)) {
                            variables.put(RESULT_DECISION_FIELD, decisionResult.get(0).get(RESULT_DECISION_FIELD));
                        }
                    } else {
                        throw new DecisionException("Нет результата решения.");
                    }

                    jobClient.newCompleteCommand(activatedJob.getKey())
                            .variables(variables)
                            .send()
                            .join();
                }
        ).open();
    }

В данном коде осуществляется подписка на событие DMN, вызов модели правил при получении сообщения от ZeeBe и результат выполнения правила сохранятся обратно в бизнес-процесс в виде переменной result (константа RESULT_DECISION_FIELD).

Когда данный микросервис отчитывается ZeeBe о выполнении операции, бизнес-процесс переходит к следующему шагу, где происходит выбор пути в зависимости от выполнения условия, заданного в свойствах стрелочки:

Микросервис action

Микросервис action совсем простой. Он также осуществляет подписку на сообщения от ZeeBe, но другого типа — action.

В зависимости от полученного результата будет вызван один и тот же микросервис action, но с различными параметрами. Данные параметры задаются в закладке headers:

Также передачу параметров можно сделать и через закладку Input/Output, тогда параметры придут вместе с переменными процесса, но передача через headers является более «каноничной». 

Посмотрим на получение сообщения в микросервисе:

private void subscribe() {
        zeebeClient.newWorker().jobType(String.valueOf(jobWorker)).handler(
                (jobClient, activatedJob) -> {
                    logger.debug("Received message from Workflow");
                    actionService.testAction(
                            activatedJob.getCustomHeaders().get(STATUS_TYPE_FIELD),
                            activatedJob.getVariablesAsMap());
                    jobClient.newCompleteCommand(activatedJob.getKey())
                            .send()
                            .join();
                }
        ).open();
    }

Здесь происходит логирование всех переменных бизнес-процесса:

 public void testAction(String statusType, Map<String, Object> variables) {
        logger.info("Event Logged with statusType {}", statusType);
        variables.entrySet().forEach(item -> logger.info("Variable {} = {}", item.getKey(), item.getValue()));
    }

Исходный код

Весь исходный код прототипа можно найти в открытом репозитории GitLab.

Компиляция образов Docker

Все микросервисы проекта собираются командой ./build.sh

Для каждого микросервиса есть различный набор действий, направленных на подготовку образов docker и загрузки этих образов в открытые репозитории hub.docker.com.

Загрузка микросервисов в кластер k8s

Для развертывания в кластере необходимо сделать следующие действия:

  1. Создать namespace в кластере kubectl create namespace zeebe-dmn-example

  2. Создать config-map общих настроек

kind: ConfigMap
apiVersion: v1
metadata:
  name: shared-settings
  namespace: zeebe-dmn-example
data:
  shared_servers_zeebe: <IP адрес кластера>

Далее создаем два персистентных хранилища для хранения данных zeebe и simplemonitor. Это позволит осуществлять перезапуск соответствующих подов без потери информации:

kubectl apply -f zeebe--sm-volume.yml

kubectl apply -f zeebe-volume.yml

Yml-файлы находятся в соответствующих проектах:

Теперь осталось последовательно создать поды и сервисы. Указанные yml-файлы находятся в корне соответствующих проектов.

kubctl apply -f zeebe-deployment.yml

kubctl apply -f zeebe-sm-deployment.yml

kubctl apply -f event-handler-deployment.yml

kubctl apply -f rules-engine-deployment.yml

kubctl apply -f action-deployment.yml

Смотрим, как отображаются наборы подов в кластере:

И мы готовы к тестовому запуску!

Запуск тестового процесса

Запуск процесса осуществляется открытием в браузере соответствующий URL. К примеру, сервис event-handler имеет сервис с внешним IP и портом 81 для быстрого доступа.

http://адрес-кластера:81/start?sum=600&limit=5000
Process started

Далее можно проверить отображение процесса в simplemonitor. У данного микросевиса тоже есть внешний сервис с портом 82. 

Зеленым цветом выделен путь, по которому прошел процесс. Серым выделены выполненные задачи, а снизу отображены переменные процесса.

Теперь можно просмотреть лог микросервиса action, там можно увидеть значение переменной statusType, которое соответствует варианту прохождения процесса.

Поделюсь, какими ресурсами пользовался для подготовки прототипа
  • https://www.youtube.com/watch?v=Q3tLKV-6J3c

  • https://github.com/zeebe-io/zeebe-dmn-worker

  • https://github.com/berndruecker/zeebe-camunda-dmn/blob/master/README.md

  • https://zeebe.io/blog/2019/08/zeebe-horizontal-scalability/


Небольшое послесловие вместо итогов

Из плюсов:

  • архитектура разработанного прототипа получилась гибкой и расширяемой. Можно добавлять любое количество микросервисов для обработки сложной логики;

  • простая нотация BPMN и DMN позволяет привлекать аналитиков и бизнес к обсуждению сложной логики;

  • Zeebe показал себя как очень быстрый фреймворк, задержки на получение/отправку сообщений практически отсутствуют;

  • Zeebe изначально разрабатывался для работы в кластере, в случае необходимости можно быстро нарастить мощности;

  • без ZeeBe Operate можно вполне обойтись, Simple-Monitor отвечает минимальным требованиям.

Из минусов:

  • хотелось бы иметь возможность редактирования DMN непосредственно в ZeeBe modeler (как это реализовано в Camunda), на данный момент, приходится использовать оба моделлера;

  • к сожалению, только в Enterprise версии Camunda есть возможность просмотра пути, по которому принималось решение:

Это очень полезная функция при отладке правил. В Community версии приходится добавлять дополнительное поле типа output для логирования, либо разработать свое решение визуализации. 

При развертывании прототипа в реальных условиях в кластере k8s необходимо добавить ограничения по ресурсам (CPU и RAM), также нужно будет подобрать лучшую систему хранения исторических данных.

Где применять такие технологии:

  • как оркестрация внутри одной команды или продукта в виде перекладывания сложной логики на диаграммы BPMN / DMN;

  • в сфере, где идет потоковая обработка данных с большим количеством интеграций. В банке это может быть проведение или проверка транзакций, обработка данных из внешних систем или просто многоэтапная трансформация данных;

  • как частичная альтернатива существующего стека ESB или Kafka для интеграции между командами.

Коллеги, понимаю, что есть множество разных технологий и подходов. Буду рад, если поделитесь в комментариях вашим опытом: как вы решаете подобные задачи?

Источник: https://habr.com/ru/company/raiffeisenbank/blog/545492/


Интересные статьи

Интересные статьи

Написание поддерживаемых сквозных тестов — это сложная задача. Часто тестировщики создают косвенный слой веб-страницы, называемый page objects, для выполнения общих дейст...
В последние годы области проектирования и дизайна начали сближаться с разработкой. Проектирование соприкасается с дизайном, а дизайн — с версткой...
Возможность интеграции с «1С» — это ключевое преимущество «1С-Битрикс» для всех, кто профессионально занимается продажами в интернете, особенно для масштабных интернет-магазинов.
Несмотря на то, что “в коробке” с Битриксом уже идут модули как для SOAP (модуль “Веб сервисы” в редакции “Бизнес” и старше), так и для REST (модуль “Rest API” во всех редакциях, начиная с...
Если Вы используете в своих проектах инфоблоки 2.0 и таблицы InnoDB, то есть шанс в один прекрасный момент столкнуться с ошибкой MySQL «SQL Error (1118): Row size too large. The maximum row si...